Биофунгициды: защита без вреда

Биофунгициды: защита без вреда

В 1928 году британский бактериолог Александр Флеминг занимался исследованием золотистого стафилококка. Ученый открыл явление антибиоза («анти» — против, «биос» — жизнь), в результате его работы был получен пенициллин

Шаг к экологизации

После открытия Флеминга ученые всего мира начали активно исследовать микроскопические грибки. Исследования показали, что, кроме патогенных микроорганизмов, на Земле существуют также и полезные грибки, оказывающие благотворное воздействие на растения. Эти грибки производят антибиотики и другие вещества с высокой биологической активностью, которые подавляют развитие вредоносных и патогенных грибков. Один из таких помощников — грибок триходерма. На основе триходермы еще в 50-е годы XX века начали производить различные биопрепараты защитного действия, которые назвали биофунгицидами.

Биофунгициды обеспечивают высокую и продолжительную защиту растений от широкого спектра грибковых болезней, повышают устойчивость растений к экстремальным климатическим условиям. Использование в практике растениеводства биологических препаратов с различной активностью — важный шаг на пути к экологизации сельского хозяйства. Биологические средства защиты растений позволяют существенно сократить или даже полностью отказаться от использования химических аналогов, избежать проблем, связанных с появлением рас патогенов с множественной устойчивостью, снижения биоразнообразия почвенной микрофлоры, накопления и миграции токсичных ксенобиотиков в экосистемах.

Биоугрозе — биозащита

Соблюдение севооборотов, своевременное удаление сорняков, оптимальный питательный режим, качественный посевной и посадочный материал — грамотная агротехнология улучшает общий агрофон и способствует повышению стойкости растений к заболеваниям, но не исключает их появления. Самые широко распространенные заболевания сельскохозяйственных растений — грибковые болезни. На их долю приходится больше 80% всех заболеваний растений. Существует множество путей заражения растений, так, например, в ткани растений грибы могут проникать через устьица, чечевички, через клетки эпидермиса, раны и трещины от солнечных ожогов. Помимо этого, переносчиками инфекции могут быть насекомые-вредители. Грибковые споры и элементы мицелия прекрасно сохраняются в почве, растительных остатках, переносятся ветром, каплями дождя и так далее.

Среднемировые (в годичном исчислении) потери урожая только основных продовольственных культур (пшеница, рис, кукуруза, картофель) из-за грибных инфекций составляют около 3,5%. По вине вредителей (исключая налеты саранчовых) — примерно втрое меньше, потери из-за сорняков – на уровне вредителей.

Широкое распространение грибных заболеваний привело к появлению огромного количества ядохимикатов, направленных именно против грибов. Первыми появились на рынке средства на основе меди, серы, ртути и хлора: ими пользовались еще наши деды. Фунгициды получили широкое применение на больших площадях, в высоких концентрациях и многократно.

Все биофунгициды можно разделить на:

— грибные — на основе грибов рода Trichoderma и др.;
бактериальные — на основе бактерий группы Bacillus subtilis, рода Pseudomonas и антибиотиков;
— и другие — такие как молотая сера, экстракты растений и фитонциды.

Грибные биофунгициды

Механизм действия этой группы биофунгицидов основан на том, что на грибах-паразитах паразитируют другие грибы — так называемые паразиты второго порядка. Так, на мучнисторосяных грибах паразитирует пикнидиальный гриб Cicinnobolus cesati, на грибах бурой ржавчины пшеницы (Puccinia triticina) — пикнидиальный гриб Darluca filum. Кроме того, такие грибы выделяют вещества, угнетающие ряд болезней.

Для получения препарата необходимо выделить чистую культуру соответствующего гриба, размножить его, а затем нанести на пораженные растения опрыскиванием или другими способами. К сожалению, таких грибов очень мало.

Trichoderma — грибсапрофит семейства Нуросгеасеае. Наиболее востребованы для производства биопрепаратов такие виды, как Т. harzianum, Т. hamatum, Т. lignorum и их биотипы.

Грибы рода Trichoderma стали основой создания биофунгицида Триходермин. Уже выявлена эффективность этих грибов против более чем 60 болезней.

Из других грибов, кроме упомянутых выше Cicinnoboius cesati и Darluca filum, можно отметить также малоизвестный микоризный гриб рода гломус, на основе которого созданы биофунгициды Микоплант и Микор-плюс.

Биофунгициды: защита без вреда

Это споры эндомикоризных грибов, получившие название «арбускулярных микоризных». При действии таких грибов растения становятся более устойчивыми к засухе и многим болезням (в основном к фитофторе и корневым гнилям), уменьшается накопление корнями тяжелых металлов.

Биофунгициды на основе бактерий

Такие биофунгициды можно разделить на три группы:

— на основе бактерии вида Bacillus subtilis (например, Фитоспорин-М, Гамаир, Фитодоктор, Бактофит, Алирин-Б и др.);
антибиотики, вырабатываемые бактериями семейства Strepto-mycetaceae, известными продуцентами стрептомицинов;
— на основе бактерий рода Pseudomonas.

Второе название широко известной в приготовлении биофунгицидов бактерии Bacillus subtilis — сенная палочка, поскольку ранее ее получали из сенных отваров. Это один из наиболее изученных видов грамположительных спорообразующих аэробных бактерий, представителей рода бацилл. Механизм их действия основан на способности продуцировать антибиотики, аминокислоты, витамины и другие вещества.

На основе Bacillus subtilis создан ряд препаратов, отличающихся видами штаммов или добавками вроде витаминов, аминокислот, гуматов и т. д. (см. таблицу).

Поскольку многие штаммы обладают ограниченным действием, ряд фирм занимаются созданием новых, обладающих более широким спектром антагонистической активности. Биофунгициды на их основе показали эффективность против таких болезней, как Fusarium (фуpариоз), Ascochyta (аскохитоз), Colletotrichum (антракноз), Botrytis (серая гниль), Phytophthora (фи тофтора), Alternaria (белая гниль) и др.

Бактерии рода Streptomyces являются продуцентами антибиотиков стрептомицинового ряда, которые обладают сильным фунгицидным действием, вызывают угнетение роста и гибель многих фитопатогенных грибов. На основе этих бактерий создан биофунгицид Фитолавин, действующее вещество которого — фитобактериомицин (32 г/1 л препарата). Это комплекс антибиотиков с широким спектром действия, рекомендованный против таких болезней, как бактериозы, антракноз, угловатая пятнистость листьев, бактериальная гниль клубней картофеля, альтернариоз томата, мо-нилиоз косточковых, парша, мучнистая роса. Компания «Фармбиомед» сейчас выпускает его под названием Фитолавин ВРК (водорастворимый концентрат). Под этим названием он и зарегистрирован.

Бактерии Pseudomonas вызывают лизис мицелия патогенных грибов, поэтому обработка некоторыми их штаммами проростков и взрослых растений может существенно снижать пораженность фитопатогенами. Клетки псевдомонад — одиночные грамотрицательные палочки, по длине не превышающие 5 мкм. Колонии бактерий очень разнообразны: слизистые, выпуклые и плоские, крупные и мелкие, обладающие способностью флуоресцировать. Некоторые представители этого рода могут существовать за счет анаэробного нитратного дыхания, другие используют энергию окисления водорода, но не брожения.

Естественно, на рост и развитие бактерий влияют условия глубинного культивирования, в частности, состав среды и аэрация. Скажем, от степени насыщения среды кислородом будет зависеть уровень биомассы псевдомонад, что важно для получения активного бактериального препарата. Поэтому культивирование бактерий и создание качественного биофунгицида под силу лишь предприятиям с современными биолабораториями с аэрируемыми биореакторами.

Вид штамма и добавки

Гамаир

Bacillus subtilis штамм М-22 ВИЗР

Фитоспорин-М

Bacillus subtilis штамм 26 Д с гуминовыми кислотами

Бактофит

Bacillus subtilis штамм ИПМ 215. Токсичен для галлицы-афидимизы, причем токсичность эта проявляется не только при опрыскивании, но и при поливе (гриб попадает в организм вредителей (тлей) через обгрызаемые листья)

ФитоДоктор

Bacillus subtilis штамм LZ12 с живыми клетками и продукты их метаболизма (фитогормоны, биофунгициды, антибиотики)

Алирин-Б

Bacillus subtilis штамм ВИЗР-10

Привлекательность биофунгицидов из псевдомонад кроется в двух факторах. Вопервых, они угнетают ряд болезней за счет антагонизма. Антагонистические свойства бактерий обусловлены наличием сложного комплекса, включающего образование антибиотических веществ феназинового ряда, белковых соединений и пептидов, литических ферментов, сидерофоров и других биологически активных соединений.

Во-вторых, многие ризосферные бактерии способны синтезировать различные фитогормоны (например, индолил3-уксусную кислоту, ИУК), которые могут стимулировать рост растений на разных стадиях развития, в частности, содействовать поступлению в растение минеральных веществ, переводя их из нерастворимой формы в растворимую (фосфор), синтезировать некоторые низкомолекулярные соединения и ферменты (например, АСС-де-заминазу, предотвращающую синтез стрессового гормона этилена). Доказано, что они продуцируют и сидерофоры — низкомолекулярные соединения, образующие комплекс с ионом железа, тем самым облегчая его транспорт как в микробные клетки, так и в клетки корня. Потому неудивительно, что на основе псевдомонад создан ряд биофунгицидов, самые известные из которых — Гаупсин и Планриз.

Производители и препараты

Наряду с такими гигантами производства средств защиты растений, как Syngenta (Швейцария), Corteva Agriscience (США), BASF (Германия), Nufarm (Австрия), FMC (США), «АгроРус» (Болгария), на рынке представлена продукция целого ряда отечественных биопредприятий, предлагающих широкий выбор биологических фунгицидов.

Биопрепараты восстанавливают плодородие

Биофунгициды: защита без вреда

Микробные препараты – не просто биологический аналог спички для «сжигания ненужной соломы». В теперешней ситуации это ключ к постоянному росту плодородия почвы. Это начало совместного роста урожая и рентабельности.

Ускоряя разложение растительных остатков, мы ставим задачу не просто их удалить. Наша задача – запустить круговорот органики, создать питательную мульчу, разуплотнить почву, нейтрализовать патогенных грибков и бактерий, сделать доступными соединения фосфора и калия, накопить биологический азот. Эту работу на переходном этапе делают только сложные биопрепараты, в которых есть все необходимые для этого микроорганизмы.

Разложение пожнивных остатков: ситуация изменилась

Если бы каких-нибудь сто лет назад мы предложили крестьянину купить у нас микробный препарат для разложения пожнивных остатков, то он рассмеялся бы – зачем платить деньги за то, что земля делает сама, естественно и бесплатно? Действительно, когда-то знаменитое на весь мир плодородие земель ЮФР и Черноземья позволяло получать урожай зерновых, не вкладывая в почву особых сил и удобрений, о которых тогда никто и не знал. Агротехника не оставляла большую часть пожнивных остатков на поле – снопы вывозились, а зерно молотили в специальном месте, часто далеко от жнивья. Никто не вывозил солому обратно на поле, а если что и возвращалось назад, то только в виде подстилки с навозом из-под коров и на очень малые площади – в основном под овощи. Остатки стерни можно было просто спалить, чтобы они не мешали сеять следующую культуру. Это считалось нормальным. Целинные и залежные земли Кубани, Ставрополья и Поволжья имели такой потенциал урожайности, что говорить о специальном удобрении полей не имело никакого смысла. Но все хорошее рано или поздно кончается.

С проблемой оскудения почв крестьянин столкнулся уже давно, но решалась она просто: земли, теряющие силу, на несколько десятков лет переводились в залежь или перелог, благо свободного места было вдоволь. В конце концов, можно было переехать на новое место, и таких примеров в истории случалось немало, взять хотя бы массовое переселение крестьян после реформы Столыпина. Сеять клевера и другие бобовые травы для повышения плодородия почв, как это придумали англичане, крестьяне Российской империи до революции так и не научились. Поэтому плодородие почв продолжало падать, и необходимость решать эту проблему обострялась с каждым годом.

И она реально решалась вплоть до 1956 года. Вся земледельческая наука занималась этим вопросом. Внедрялось травополье Вильямса, начался грандиозный план облесения и обводнения степной зоны, вводились севообороты, исследовались биологические причины почвенной продуктивности. Но после смерти Сталина Хрущёв, ничего не смыслящий в агрономии, отмахнулся от учёных и похерил всю эту работу. Он распахал целину и думал, что разрешил этим все вопросы. Затем руководство повелось на дальновидную провокацию Запада — «зелёную революцию» Нормана Барлауга, и земледелие страны пошло «курсом химизации». «Пре-имущества социализма» свелись к валу минеральных удобрений и пестицидов. Примитивный агрохимический анализ стал единственным и священным понятием о почвенном плодородии. Увы, он остаётся таким до сих пор. Понимание причин плодородия было вновь отброшено назад, в начало века.

Немного теории

Оскудение почвы еще в старину обозначалось очень точным словом – «выпаханность», которое использовалось достаточно широко. Сейчас, когда причины деградации почв поняты, смысл этого термина также хорошо понятен.

Уже около сотни лет «плодородие» определяется агрохимическим анализом. Он стандартный: NPK, общий гумус и рН. На самом деле, этот анализ показывает лишь производственный потенциал почвы на сегодня, но, как ни странно, не даёт никакого представления о плодородии. Плодородие – комплекс естественных процессов самой почвы, а цифры анализа целиком зависят от моментных искусственных добавок. Родившись из теории минерального питания Юстуса Либиха, агрохиманализ видит лишь частичные поверхностные следствия, не вникая в причины. Это то же, что анализ крови: видя цифры, мы даём лекарства и абсолютно не задумываемся о причинах самого здоровья – о том, как сделать организм самодостаточным.

Плодородие – вовсе не сумма показателей. Плодородие – постоянный динамический процесс. Корни, микробы, грибы и фауна почвы свершают колоссальный труд: строят структуру, перераспределяют и смешивают, переводят органику и породы в растворимые питательные формы, фиксируют азот воздуха. Почвенная живность снабжает растения ВСЕМ НЕОБХОДИМЫМ – условиями, влагой, питанием, стимуляцией, защитой.

Сейчас, наконец, формируется современное понимание плодородия почв, учитывающее его причины. Например, такое понимание недавно предложил профессор СПБГУ А. Попов. По его теории, плодородие определяется а) круговоротом питательных веществ в почве – всех, прежде всего включая углерод, т.е. органику, б) симбиозом высших растений и почвенных микроорганизмов, и в) взаимоотношением микробов и грибов друг с другом.

Иначе говоря, плодородие есть результат круговорота элементов, из которых строятся и которые используют живые организмы. В точку! Именно БИОГЕННЫЕ элементы в природе используются растениями. Именно живность, по большей части микроорганизмы, растворяют, усваивают, связывают, преобразуют и вовлекают в почвенный обмен все питательные элементы, из которых состоит вода, воздух, горные породы почвы и сама мёртвая органика. Но питание – лишь треть всего труда почвенной жизни. Микробы дают растениям гормоны, ферменты, стимуляторы, а также защищают их — продуцируют иммуномодуляторы, антибиотики, фитонциды, сигнальные вещества. Именно в этой «кухне» живут и с этого стола питаются корни растений. Этому содружеству – десятки и сотни миллионов лет.

Наглядные доказательства роста растений на минеральных солях, кажущиеся очевидными, были хитрой обманкой. Во-первых, и в песке, и в керамзите с раствором корни продолжают сотрудничать с микробами. А во-вторых, и главное: эти опыты убедили всех в том, что растениям нужны ИСКУССТВЕННО ВНОСИМЫЕ минеральные соли. Не естественные, коих в почве тьма, а именно искусственные! С тех пор мир послушно тратит миллиарды на минералку, хотя доказано-передоказано, что те же питательные элементы могут давать растениям микробы и грибы. Учитесь строить перспективный бизнес, господа!

Круговорот элементов (читай: плодородие) создаёт почвенная живность. Её корм/топливо – отмершая органика: опад растений, тела и фекалии живых существ. Всё вместе, живое + неживое – активный, или лабильный гумус. Его агрохимия не определяет! Но пока мы не признаем главенство этого «живого вещества» в процессах плодородия, мы не решим задач агрономии.

По факту всё просто: чем быстрее идет круговорот биогенных элементов между почвой, микробами и растением, тем выше урожайность, а главное – тем она дешевле. Вспашка в разы усиливает минерализацию и окисление органики. Углерод улетает, почва обедняется.

БИОПРЕПАРАТЫ ВОССТАНАВЛИВАЮТ ПЛОДОРОДИЕ

Традиционная агрономия задумана наоборот: убивать почву, чтобы вносить больше искусственных «лекарств» и делать производство дороже. Зачем? Чтобы красиво, под видом помощи, забирать у вас прибыль. Обычная практика «науки экономики». Раньше так делало государство, сейчас – банки и корпорации. Мало кто знает: автором определения плодородия в учебниках агрохимии является… Карл Маркс. Он не был ни почвоведом, ни даже агрохимиком – он был экономистом, и свою науку писал на деньги банкиров. Банкирам надо, чтобы народ жил в напряге. Такова суть банковского бизнеса: все должны просить денег в долг. Нет проблем – в долг не просят, нет банковской власти и прибыли. А это недопустимо! Не получается мытьём – наукой, сделают катанием – войной.

Поэтому Либих, выдвинув однобокую теорию, стал для банкиров просто находкой. По Либиху, и органика, и гумус – всего лишь вместилища минеральных веществ. Их надо скорее распылить, окислить и минерализовать – «освободить питательные компоненты». С этой задачей блестяще справился плуг, изобретённый Саксом. Разумеется, почвы стали быстро «выпахиваться». И был налажен многомиллиардный бизнес минеральных удобрений. «Изобретя плуг, один немецкий учёный Сакс принёс во много раз больше вреда всему миру, чем все немцы во второй мировой войне» — говорит один из лозунгов в Канадском Университете Земледелия. Канадцы уже больше полувека не пашут с отвалом.

И вот итоги. В результате настойчивой многолетней минерализации активного гумуса живая биомасса почв уменьшилась с 30 до 2-4 тонн на гектар. И вот что важно: вместе с ней падает коэффициент отдачи минеральных удобрений. Если на заре внедрения, в 19-м веке, 1 кг NPK с легкостью давал 28 кг прибавки урожая зерна, то сейчас – всего 4-5 кг, а часто ещё меньше. Рентабельность удобрений близка к нулю. «Даже при достаточном обеспечении минеральным питанием растения не могут сформировать полноценный урожай. Таковы следствия потери активной части гумуса» (академик В. Волкогон).

Вдумайтесь. Рентабельность грамотного биоземледелия на практике – 200-300%. Обычная рентабельность наших полей – 15-25%. Превратив почву в мёртвый субстрат, фермеры клянчат деньги у банкиров, живут в долговой кабале и верят, что это нормально! Остаётся только удивляться нашей упёртости в минералку и пахоту. Да, нас так учили, нас приучили к кредитам. Ну и что? Не пора ли послать их далеко и надолго?

Итак, для плодородия нужно:

а) Много свежих органических остатков – соломы, ботвы, корней, фекалий и пр.

б) ПРАВИЛЬНАЯ микробная экосистема – чтобы всё это готовить и доносить до корней. Правильная – значит естественная: разнообразная, устойчивая, активная. Сейчас её приходится восстанавливать с помощью сложных многовидовых биопрепаратов – своей во многих почвах уже нет.

в) Нужно, чтобы всё это не уничтожалось, а усиливалось способом почвообработки. Она должна создавать сверху покровную мульчу, не разрушая структуру каналов и капиллярность под ней. Тогда круговорот питания и энергии наращивает обороты, и урожай растёт вместе с рентабельностью, а не наоборот. О том, что продукция обретает высочайшее качество, можно не говорить.

ЗРИ В КОРЕНЬ!БИОПРЕПАРАТЫ ВОССТАНАВЛИВАЮТ ПЛОДОРОДИЕ

Всасывающие корешки растений, как «чулками», окружены ризосферой – разными микроорганизмами, которые растут и движутся вместе с корешками. Численность и видовой состав этих симбионтов управляется корневыми выделениями – растение постоянно кормит микробов. Насколько они важны для растения? Им отдаётся до 40% всех продуктов фотосинтеза. Корни просто сочатся сахарами, аминокислотами и сигнальными веществами. А природа ничего не тратит просто так.

Микробный «чехол» корешков – это посредник между почвой и растением. Именно микробы ризосферы растворяют минеральные породы, снабжая корни калием, фосфором, кальцием, магнием, железом, серой и прочими элементами. Они же превращают в нитраты азот воздуха и расщепляют до аминокислот белковую органику. По образному выражению микробиолога Н. Красильникова, ризосферные микробы напоминают органы пищеварения животных.

Биофунгициды: защита без вреда

Почвы, примитивно понимаемые как субстрат и деградированные пахотой и химизацией, не помогают, а мешают растениям раскрывать потенциал продуктивности. Ниже 25 см плуги и техника создают плужную подошву – уплотняют почву почти в камень. Эту подошву почти не могут пробивать корни, здесь нарушено капиллярное движение влаги. Верхний слой почвы отсекается от подпочвы – и мы целиком зависим от погоды.

Сегодня в интенсивно используемых почвах многие полезные микробы находятся на грани исчезновения. Но в природе свято место пусто не бывает: не могут жить сапрофиты (поедатели мёртвой органики) – на их место приходят паразиты, нападающие на живые растения. Об этом – статья 2 о новых патогенах.

Есть ли проблемы с соломой?

Нет худа без добра: как мы ни слепы, природа заставляет раскрывать глаза. «Биологическая активность почв» – для нас абстракция. Урожаи падают – хрен с ними, спишем на погоду. Но когда перестаёт разлагаться солома, она начинает мешать агрегатам. Вот это мы сразу замечаем! Стали её сжигать, а нам говорят – нельзя, почве нужно возвращать органический углерод, без него почва деградирует. Стали оставлять – а на ней масса новых инфекций разводится. Раньше микрофлора была нормальная – съедала солому, подавляла патогенов. Сейчас наоборот, ¾ патогенов в соломе накапливаются, и корневые гнили тоже. В основном это грибы рода фузариум, но в последние годы – бактерии, базальный бактериоз.

Первыми страдают и исчезают микробы, разлагающие целлюлозу – клетчатку соломы.

Источник https://agriecomission.com/base/biofungicidy-zashchita-bez-vreda

Источник https://npobiocentr.ru/stati/stimix2/

Источник

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *